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Motivation

We have two controlled objects. First player chooses control for the first object as
a function of time. Second player controls the second object.

We have some performance index depending on controls (energy or fuel
consumption) and on coordinates of objects at final time moment (how close they
are to each other).

Players have opposite goals: first – minimize performance index, second –
miximize.
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Problem statement

We have two objects with motion given by equations

dx(t)
dt

= Ax(t)x(t) + B(t)u(t), x(t) ∈ Rn, u(t) ∈ P ⊂ Rp

dy(t)
dt

= Ay(t)y(t) + C(t)v(t), y(t) ∈ Rm, v(t) ∈ Q ⊂ Rq

(x(0), y(0)) = (x0, y0), t ∈ [0, θ].
Performance index:

F (u, v) + Φ(x, y) =
∫ θ

0
F̃ (τ, u(τ ), v(τ ))dτ + Φ(x(θ), y(θ)). (1)

Our goal: u(t) ∈ L2([0, θ], P ), v(t) ∈ L2([0, θ], Q) s.t. (u, v) is a saddle point
of (1).
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Historical notes

Differential games

Isaacs R., 1965, Hamilton-Jacobi-Bellman-Isaacs equation

Pontryagin L.S., 1967, Alternating integral method

Krasovskii N.N., Subbotin A.I., 1988, Stable bridge method

Ongoing research by many people, see review Kumkov, S.S., Le Ménec, S.,
Patsko, V.S., 2017

Optimization

Mirror Descent, Nemirovsky A.S., Yudin D.B., 1983; Beck A., Teboulle M., 2003

Dual averaging, Nesterov Y., 2009

Extragradient method, Korpelevich G.M., 1976

Mirror-Prox, Nemirovski A., 2004

Dual extrapolation, Nesterov, Y., 2007

Ongoing research by many people...
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Assumptions

Introduce operators B : L2([0, θ], P )→ Rn, C : L2([0, θ], Q)→ Rm:

x(θ) = Vx(θ, 0)x0 +
∫ θ

0
Vx(θ, τ )B(τ )u(τ )dτ = x0 + Bu,

y(θ) = Vy(θ, 0)y0 +
∫ θ

0
Vy(θ, τ )C(τ )v(τ )dτ = y0 + Cv.

Assumptions

There exist a saddle-point.

The sets P,Q are closed, convex and bounded.

In the performance index F (u, v) + Φ(x, y)
F (·, v) is convex for any fixed v,

F (u, ·) is concave for any fixed u,

Φ(·, y) is convex for any fixed y,

Φ(x, ·) is concave for any fixed x.

F (u, v) is u.s.c. in v and l.s.c. in u, and Φ(x, y) is continuous.

Operators B, C are bounded.
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Transform problem

We solve the problem

min
u∈U

[
max
v∈V
{F (u, v) + Φ(x, y) : y = y0 + Cv} : x = x0 + Bu

]
.

Since B, C are bounded, x(θ), y(θ) are bounded and we can assume that
x(θ) ∈ X, y(θ) ∈ Y , where X, Y are closed, convex and bounded.

Introducing Lagrange multipliers λ, µ, we write an adjoint problem

min
λ

max
µ

{
min
u∈U

max
v∈V

[F (u, v)− 〈µ,Bu〉 + 〈λ, Cv〉] +

+ min
x∈X

max
y∈Y

[Φ(x, y) + 〈µ, x〉 − 〈λ, y〉]− 〈µ, x0〉 + 〈λ, y0〉
}

=: min
λ

max
µ
ψ(λ, µ)

Lemma

Initial problem is equivalent to the adjoint problem.
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Reformulation as Variational Inequality

Let (u∗, v∗, x∗, y∗) be saddle-point in the definition of ψ(λ, µ) with fixed λ, µ. Then

ψ(·, µ) is convex in λ for all µ and has subgradient
ψ′λ(λ, µ) = Cv∗ + y0 − y∗ ∈ ∂λψ(λ, µ) which is bounded.

ψ(λ, ·) is concave in µ for all λ and has supergradient
ψ′µ(λ, µ) = x∗ − Bu∗ − x0 ∈ ∂µψ(λ, µ) which is bounded.

Problem reformulation

Saddle-point: ψ(λ∗, µ) ≤ ψ(λ∗, µ∗) ≤ ψ(λ, µ∗) ∀λ, µ
Concavity in µ: ψ(λ, µ∗) ≤ ψ(λ, µ) + 〈ψ′µ(λ, µ), µ∗ − µ〉 ∀λ, µ
Convexity in λ: ψ(λ∗, µ) ≥ ψ(λ, µ) + 〈ψ′λ(λ, µ), λ∗ − λ〉 ∀λ, µ
〈ψ′λ(λ, µ), λ− λ∗〉 + 〈−ψ′µ(λ, µ), µ− µ∗〉 ≥ 0 ∀λ, µ.

Denote z = (λ, µ), g(z) = (ψ′λ(λ, µ),−ψ′µ(λ, µ)). Our goal is to find a weak
solution z∗ of the variational inequality

〈g(z), z − z∗〉 ≥ 0 ∀z ∈ S(≡ Rn × Rm).
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General finite-dimensional VI

Find z∗ s.t. 〈g(z), z − z∗〉 ≥ 0 ∀z ∈ S,
S ⊆ RN – convex closed set,

g(z) – bounded and monotone operator, i.e. 〈g(z1)− g(z2), z1 − z2〉 ≥ 0.

Some auxiliary objects

Choose norm ‖ · ‖ in RN and σ-strongly convex prox-function d(z), i.e., for any
z1, z2 ∈ S, d(z2)− d(x)− 〈∇d(z1), z2 − z1〉 ≥ σ

2‖z1 − z2‖2.

Euclidean setup: ‖ · ‖ = ‖ · ‖2, d(x) = 1
2‖x‖

2
2.

Simplex setup: S = {z ∈ Rn
+, 〈e, z〉 = 1}, ‖ · ‖ = ‖ · ‖1, d(x) =

∑n
i=1 xi ln xi.

D : d(z∗) ≤ D, FD = {z ∈ S : d(z) ≤ D}
Given sequences λi ≥ 0, zi ∈ S, gi ∈ RN , i = 0, . . . , k, define

δk(D) = max
z

{
k∑
i=0

λi〈gi, zi − z〉 : z ∈ FD

}
,

sequence β̂i : β̂0 = β̂1 = 1, β̂i+1 = β̂i + 1
β̂i

. NB: β̂k ∼
√

2k.
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Simple Dual Averages Method [Nesterov, 2009]

Initialization s0 = 0, z0, γ > 0
Step k ≥ 0

1. gk = g(zk). sk+1 = sk + gk.

2. βk+1 = γβ̂k+1. zk+1 = arg minz∈S{〈sk+1, z〉 + βk+1d(z)}.

Theorem (Nesterov, 2009)

Assume that ‖gk‖∗ ≤ L, k ≥ 0.

1. δk(D) ≤ β̂k+1

(
γD + L2

2σγ

)
.

2. If a solution z∗ exists, then ‖zk − z∗‖2 ≤ 2
σd(z∗) + L2

σ2γ2 .

3. If exists r > 0 : Br(z∗) ⊆ FD, where Br(z0) = {z : ‖z − z0‖ ≤ r}, then

1
k + 1

∥∥∥∥∥
k∑
i=0

gi

∥∥∥∥∥
∗

≤ β̂k+1
r(k + 1)

(
γD + L2

2σγ

)
.
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Back to our problem

Find z∗ s.t. 〈g(z), z − z∗〉 ≥ 0 ∀z ∈ Rn × Rm,

where z = (λ, µ), g(z) = (ψ′λ(λ, µ),−ψ′µ(λ, µ)) – bounded.

Prox-functions dλ(λ) is strongly convex with convexity parameter σλ,
dµ(µ) is strongly convex with convexity parameter σµ.

‖z‖ =
√
κσλ ‖λ‖2 + (1− κ)σµ ‖µ‖2, κ ∈ [0, 1].

Define d(z) = κdλ(λ) + (1− κ)dµ(µ).
Let (λ∗, µ∗) – be a saddle-point in the adjoint problem.

Since zk is bounded, we can choose Dλ s.t. dλ(λk) ≤ Dλ ∀k ≥ 0 and
Br/

√
κσλ(λ∗) ⊆ {λ : dλ(λ) ≤ Dλ} for some r > 0. Similarly we choose Dµ.

Define FD = {z ∈ S : d(z) ≤ D}, D = κDλ + (1− κ)Dµ. Then
Br(z∗) ⊆ FD.
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Equivalent problem

Denote

φ(u, x, v, y) =
min
λ

max
µ
{F (u, v) + Φ(x, y) + 〈µ, x− x0 − Bu〉 + 〈λ, y0 + Cv − y〉 :

dλ(λ) ≤ Dλ, dµ(µ) ≤ Dµ}.

Then our problem is equivalent to min
u∈U ,x∈X

max
v∈V ,y∈Y

φ(u, x, v, y).

Denote
ξ(u, x) = max

v∈V ,y∈Y
φ(u, x, v, y),

η(v, y) = min
u∈U ,x∈X

φ(u, x, v, y).

Then ξ(u, x) ≥ φ(u∗, x∗, v∗, y∗) ≥ η(v, y) ∀u ∈ U , v ∈ V , x ∈ X, y ∈ Y .

Duality gap ξ(û, x̂)− η(v̂, ŷ) characterizes the quality of an approximate
solution (û, x̂, v̂, ŷ).

12/26 Primal-dual methods for solving infinite-dimensional games



Main result

Denote

ûk+1 = 1
k + 1

k∑
i=0

ui, v̂k+1 = 1
k + 1

k∑
i=0

vi,

x̂k+1 = 1
k + 1

k∑
i=0

xi, ŷk+1 = 1
k + 1

k∑
i=0

yi,

(ui, vi, xi, yi) s.-p. defining ψ(λi, µi), where (λi, µi) is generated by SDA.

Theorem

ξ(ûk+1, x̂k+1)− η(v̂k+1, ŷk+1) ≤ 1
k + 1

δk(D) = O

(
1√
k

)
.

Theorem

‖x0 + Bûk+1 − x̂k+1‖ ≤
√
σµδk(D)
r(k + 1)

, ‖y0 + Cv̂k+1 − ŷk+1‖ ≤
√
σλδk(D)
r(k + 1)

.
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Numerical example

We have two objects with motion given by equations

dx(t)
dt

=
(

1− t
1

)
u(t), dy(t)

dt
=
(

1− t
1

)
v(t), u(t) ∈ P, v(t) ∈ Q

t ∈ [0, 1], n = 2, m = 2, P = Q = [−1, 1].

J(u, v) = 1
2
‖x(1)− y(1)‖2 − ‖y(1)− a‖2.
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Controls

15/26 Primal-dual methods for solving infinite-dimensional games



Error in funcional value Error in equality consraints
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Outline

1. Convex-concave problem
2. Strongly convex-concave problem
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Additional assumptions

Assume additionally

Strong convexity

F (u, v) is strongly convex in u with constant σFu which doesn’t depend on v
and strongly concave in v with constant σFv which doesn’t depend on u,

Φ(x, y) is strongly convex in x with constant σΦx which doesn’t depend on y and
strongly concave in y with constant σΦy which doesn’t depend on x.

Lipschitz smoothness

‖∇uF (u, v1)−∇uF (u, v2)‖ ≤ Luv ‖v1 − v2‖ ,
‖∇vF (u1, v)−∇vF (u2, v)‖ ≤ Lvu ‖u1 − u2‖ ,
‖∇xΦ(x, y1)−∇xΦ(x, y2)‖ ≤ Lxy ‖y1 − y2‖ ,
‖∇yΦ(x1, y)−∇yΦ(x2, y)‖ ≤ Lyx ‖x1 − x2‖ ,
‖∇xΦ(x1, y)−∇xΦ(x2, y)‖ ≤ Lxx ‖x1 − x2‖ ,
‖∇yΦ(x, y1)−∇yΦ(x, y2)‖ ≤ Lyy ‖y1 − y2‖ .
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Better properties of the adjoint problem

min
λ

max
µ

{
min
u∈U

max
v∈V

[F (u, v)− 〈µ,Bu〉 + 〈λ, Cv〉] +

+ min
x

max
y

[Φ(x, y) + 〈µ, x〉 − 〈λ, y〉]− 〈µ, x0〉 + 〈λ, y0〉
}

= min
λ

max
µ
ψ(λ, µ).

Let (u∗, v∗, x∗, y∗) be saddle-point in the definition of ψ(λ, µ) with fixed λ, µ.

Lemma

ψ(·, µ) is convex and smooth in λ for any µ,∇λψ(λ, µ) = y0 + Cv∗ − y∗ and
∇λψ(λ, µ) is Lipschitz continuous.

ψ(λ, ·) is concave and smooth in µ for any λ,∇µψ(λ, µ) = x∗ − x0 − Bu∗
and∇µψ(λ, µ) is Lipschitz continuous.
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Reformulation as Variational Inequality

Find z∗ s.t. 〈g(z), z − z∗〉 ≥ 0 ∀z ∈ S,
z = (λ, µ)
S = Rn × Rm – convex closed set,

g(z) = (∇λψ(λ, µ),−∇µψ(λ, µ)) – monotone operator,

g(z) is Lipschitz continuous, i.e., ‖g(z1)− g(z2)‖∗ ≤ L‖z1 − z2‖.
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Dual extrapolation method [Nesterov, 2007]

Bregman divergence ω(x, y) = d(y)− d(x)− 〈∇d(x), y − x〉,
x̄ ∈ S̃ - center of S, D : ω(x̄, x∗) ≤ D, FD = {x ∈ S : ω(x̄, x) ≤ D}
Tβ(z, s) = arg maxx∈S{〈s, x− z〉 − βω(z, x)}.

Assume that g(x) is Lipschitz continuous on S with constant L.
Initialization: Choose x̄ ∈ S̃. Fix β = L

σ . Set s−1 = 0.
Iteration (k ≥ 0):

1. Compute xk = Tβ(x̄, sk−1),
2. Compute yk = Tβ(xk,−g(xk)),
3. Set sk = sk−1 − g(yk).

Theorem [Nesterov, 2007]

δk(D) := maxx
{∑k

i=0 λi〈g(yi), yi − x〉 : x ∈ FD
}
≤ LD

σ .

If exists r > 0 : Br(x∗) ⊆ FD, then 1
k+1

∥∥∥∑k
i=0 g(yi)

∥∥∥
∗
≤ LD

σ(k+1).
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Main result

Denote

ûk+1 = 1
k + 1

k∑
i=0

ui, v̂k+1 = 1
k + 1

k∑
i=0

vi,

x̂k+1 = 1
k + 1

k∑
i=0

xi, ŷk+1 = 1
k + 1

k∑
i=0

yi

(ui, vi, xi, yi) saddle-point defining ψ(λi, µi), where the sequence (λi, µi) is
generated by the described method.

Theorem 1

ξ(ûk+1, x̂k+1)− η(v̂k+1, ŷk+1) ≤ LD

k + 1
.

NB: ξ(u, x) ≥ φ(u∗, x∗, v∗, y∗) ≥ η(v, y).

Theorem 2

‖x0 + Bûk+1 − x̂k+1‖ ≤
LD
√
σµ

r(k + 1)
, ‖y0 + Cv̂k+1 − ŷk+1‖ ≤

LD
√
σλ

r(k + 1)
.
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Numerical example

We have two objects with motion given by equations

dx(t)
dt

=
(

1− t
1

)
u(t), dy(t)

dt
=
(

1− t
1

)
v(t), u(t) ∈ P, v(t) ∈ Q

t ∈ [0, 1], n = m = 2, P = Q = [−1, 1].

J(u, v) =
∫ 1

0

(
(u(t))2

2
− (v(t))2

2

)
dt + 1

2
‖x(1)− y(1)‖2

2 − ‖y(1)− a‖2
2
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Controls
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Error in funcional value Error in equality consraints
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Conclusion

We consider convex-concave and strongly convex-concave saddle-point optimal
control problems (differential games).

For each case, we propose an algorithm for approximating a saddle-point.

We estimate the convergence rate of the proposed algorithms.

Numerical experiments show that the practical performance is in consistency
with the theoretical convergence rate estimates.

Thank you for your attention!
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