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Motivation

= We have two controlled objects. First player chooses control for the first object as
a function of time. Second player controls the second object.

= We have some performance index depending on controls (energy or fuel
consumption) and on coordinates of objects at final time moment (how close they
are to each other).

= Players have opposite goals: first — minimize performance index, second —
miximize.
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Problem statement

We have two objects with motion given by equations

dﬁ”: A, (De(t) + B(t)u(t), z(t) € R", u(t) € P C R?
W A, 0y() + ClOl), y(t) €R”, oft) € Q C R

(2(0),4(0)) = (zo,y0), t € [0,6].
Performance index:

~

0
F(u,v)+ ®(x,y) = /0 F(1,u(t),v(r))dT + ®(z(0),y(0)). (1)

Our goal: u(t) € Lo(|0,0], P), w(t) € Lo(|0,0],Q) s.t. (u, v) is a saddle point
of (1).

4/26 Primal-dual methods for solving infinite-dimensional games | ,&{@n}

vvvvvvv



Historical notes

Differential games

= [saacs R., 1965, Hamilton-Jacobi-Bellman-lsaacs equation
= Pontryagin L.S., 1967, Alternating integral method
= Krasovskii N.N., Subbotin A.l., 1988, Stable bridge method

= Ongoing research by many people, see review Kumkov, S.S., Le Ménec, S.,
Patsko, V.S., 2017

Optimization

= Mirror Descent, Nemirovsky A.S., Yudin D.B., 1983; Beck A., Teboulle M., 2003
= Dual averaging, Nesterov Y., 2009

= Extragradient method, Korpelevich G.M., 1976

= Mirror-Prox, Nemirovski A., 2004

= Dual extrapolation, Nesterov, Y., 2007

= Ongoing research by many people...
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Assumptions

Introduce operators B : Ly(|0, 6], P) — R", C: Ly(]0,0],Q) — R™:

)
z(0) = V,(0,0)xg + /0 V(0, 7)B(T)u(T)dT = 20 + Bu,

0
y(60) = V,(0,0)y + /o V, (0, 7)C(T)v(T)dT = 3o + Cu.

= There exist a saddle-point.

= The sets P, () are closed, convex and bounded.
= In the performance index F'(u, v) + ®(x, y)

= [(-,v) is convex for any fixed v,
= ['(u,-) is concave for any fixed u,
= ®(-,y) is convex for any fixed y,
= O(z, ) is concave for any fixed .

= ['(u,v)is u.s.c.invandl.s.c.in u, and ®(z, y) is continuous.

= Operators B, C are bounded.
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Transform problem

We solve the problem
min [max{F(u,v) + Pz, y) cy=y+Cv}:x=uxy+ Bu| .
ueld | veV
Since B, C are bounded, (), y(#) are bounded and we can assume that
z(0) € X,y(0) € Y, where X,Y are closed, convex and bounded.

Introducing Lagrange multipliers A, 1, we write an adjoint problem

min mﬁxx {Znelg{l tmax |F(u,v) — (i, Bu) + (\,Cv)] +

i [02,9) + 1. — ()] = Qo) + () |

=: min max Y (\, y)
"

Lemma

Initial problem is equivalent to the adjoint problem.
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Reformulation as Variational Inequality

Let (u*, v*, x*, y*) be saddle-point in the definition of 1)\, 1) with fixed A, z1. Then

= (-, ) is convex in \ for all 1+ and has subgradient
Y\, 1) = Cv* 4+ yo — y* € O\ip(\, ) which is bounded.

O zp()\, ) is concave in 1 for all A and has supergradient
V(A ) = 2% — Bu* — 29 € 9,%(\, 1) which is bounded.

Problem reformulation

= Saddle-point: (", 1) < (X", 1*) < (A, 1*) VYA u

= Concavity in p: (A, 1) < (A, p) + (P, (A, p), —u> VA, p
-Convexuty in \: ZP(A*,/L) > (A, u) M( ) —A) VAu

-]
Denote z = (A, ), g(2) = (V\(A, p), =9, (A, ). Our goal is to find a weak
solution z* of the variational inequality

(9(2),z = 2") >0 Vze S(=R"xR™).
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General finite-dimensional VI

Find 2* st (g(z),z—2") >0 VzeSs,
« S C RY — convex closed set,

= g(2) — bounded and monotone operator, i.e. (g(21) — g(22), 21 — 22) > 0.

Some auxiliary objects

= Choose norm || - || in RY and o-strongly convex prox-function d(z), i.e., for any
21,20 € S, d(z0) — d(z) — (Vd(z1), 20 — z1) > §||z1 — 22|
= Euclidean setup: || - || = || - [|2, d(z) = 3[l}5.
. Simplex setup: § = {= € RY, {e,2) = 1}, | - || = | - . d() = X1, s In

=D d(z") <D, Fp={2z€S5:d(z) <D}
= Given sequences \; > 0,z € 5, g; e RY,i=0,..., k, define

k
0r(D) = max {Z NlGiyzi — 2y 1 2z € fp} :
i=0

= sequence BZ ; 80 = 31 = 1, @-H = BZ + % NB: ﬁAk ~ V2k.
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Simple Dual Averages Method [Nesterov, 2009]

Initialization sg = 0, 2o,y > 0
Step k > 0

1.gr=9g(2). Skt1 = Sk + G-
2. Bt = YBk1. Zr = argminses{(sp41, 2) + Brr1d(2)}.

Theorem (Nesterov, 2009)
Assume that ||gi||« < L,k > 0.

1. 65(D) < B (WD + %)

2. If a solution z* exists, then ||z, — z*||* < 2d(z*) + 05—;

3. IfexistsT > 0:B,.(z%) C Fp, where*B,(z)) = {z: ||z — 20|| < r}, then
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Back to our problem

Find 2* st (g(z),z—2") >0 VzeR"xR",
where z = (A, u), g(2) = (3(A, 1), =1, (A, 1)) — bounded.

= Prox-functions dy(\) is strongly convex with convexity parameter o,
d, (1) is strongly convex with convexity parameter o,.

2 2
ezl = \/ron AP + (1= K)o Il & € [0,1]
= Define d(2) = kd\(A) + (1 — k)d, ().
= Let (A", 4*) — be a saddle-point in the adjoint problem.

= Since z;, is bounded, we can choose D) s.t. dy(A\;) < Dy Vk > 0and
B,/ (A7) C{A: dy(A) < Dy} for some r > 0. Similarly we choose D,,.

= Define Fp ={z € S :d(2) <D}, D =kDy\+ (1 —k)D,. Then
‘BT<Z*) C ./TD.
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Equivalent problem

= Denote

Ou, z,v,y) =
min max{F(u,v) + ®(z,y) + (u, z — ¢ — Bu)

AH
dr\(A) < Dy, dy(p) < Dy}

= Then our problem is equivalentto min  max_  ¢(u, x,v,y).
uel ,xeX veV,yeY

+<)‘7y0—|—cv_y>:

= Denote
Slu, ) = max ¢u,z,v,y),
n(v,y) = i ¢(u, z,v,y).

(u*, 2", v y") > nv,y) YuelUveV,rxe X yeY.

:%) n(v, ) characterizes the quality of an approximate

-

= Then &(u, z) >
U

= Duality gap &
solution (i,

vvvvvvv
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Main result

Denote
k k
. 1 Z ) 1
U — u'7 v - rU.’
k k
. 1 R 1
CE _—— :C 3 e S ;
R A ; i Ykl = 3 1 ;_o Yi

< 0.(D) = O
k+1k() (

A A 7,0x(D) A . o\0x(D)
|zo + Bligt1 — Tpt1]| < ﬂJr R |yo + COpt1 — G|l < \/r(_kJr D
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Numerical example

We have two objects with motion given by equations

%@:(“ﬁ)mm %9:(ﬁf)m%u@eamweg
tel0,1], n=2, m=2,P=Q=[-1,1].

1
J(w,0) = Sllx(1) =y = [ly(1) — ol
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Error in funcional value Error in equality consraints
7 # In(Cv-y empirical error)
# In (empirical error) A . In(Bu-x empirical error)
6 In (theoretical error) Y'Y A In(theoretical error)
5
.
4 *
*
3 ME PV In(k+1)
2 \ o . 2 _ 3 4 5 6
. =
In(k+1) ——
0 1 2 3 4 5
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Outline

1. Convex-concave problem
2. Strongly convex-concave problem
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Additional assumptions

Assume additionally

= Strong convexity

F'(u,v) is strongly convex in u with constant o g, which doesn’t depend on v
and strongly concave in v with constant o, which doesn’t depend on wu,

d(x, y) is strongly convex in z with constant og, which doesn’t depend on y and
strongly concave in y with constant o, which doesn’t depend on .

= Lipschitz smoothness

VuF(u,v1) — VyF(u,v)|| < Ly ||v1 — v,
VoF(uy,v) — Vo F(ug, v)|| < Ly [Jug — usl|,
Vo @(x,y1) = Va®(z, y2)|| < Ly ly1 — 92|,
qu)@jla y) — qu)(x% y)|| < Lyy |21 — 22|,
qu)(ﬂfl,w _ vx®<$2ay>H S Lxm Hxl — xQH ;
Vy®(z,y1) = Vy@(@, y2)l| < Lyy lyn — vl -
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Better properties of the adjoint problem

min mf}X {1;&11615[1 max F(u,v) — {(u, Bu) + (\,Cv)] +

4 minmex [0(z, ) + (1 2) — )] — i 20) + (A yo>} = min max (1 ).

X Y

Let (u*, v*, x*, y*) be saddle-point in the definition of 1(\, 1) with fixed A, p.

= 1)(+, pu) is convex and smooth in X for any p, V \to(\, u) = yo + Cv* — y* and
V(A ) is Lipschitz continuous.

= 1)(], -) is concave and smooth in p forany A\, V ,0(\, 1) = & — xy — Bu*
and 'V ,\)(\, p) is Lipschitz continuous.
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Reformulation as Variational Inequality

Find 2* st (g(z),z—2") >0 VzeSs,

=2 = (A p)
= 5 = R" X R™ - convex closed set,
= g(2) = (Va(A, i), =V, 90(A, pt)) — monotone operator,

= g(2) is Lipschitz continuous, i.e.,

g(z1) — g(22) ||« < L||z1 — 22|
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Dual extrapolation method [Nesterov, 2007]

= Bregman divergence w(z,y) = d(y) — d(x) — (Vd(z),y — x),
sz € S-centerof S, D:w(z,z*) <D, Fp={r S wz) <D}
= T3(z,s) = argmaxges{ (s, — 2) — fw(z,x)}.

Assume that g(z) is Lipschitz continuous on S with constant L.
Initialization: Choose € S. Fix 3 = £. Set s_; = 0.
lteration (k > 0):

1. Compute zj, = Ts(x, s;_1),

2. Compute yi, = Ts(xk, —g(Tk)),
3. Set 5. = Sp._1 — g(yk)

 3u(D) = max, { T Mg,y —2) 1 w e Fp} <12

= If exists 7 > 0 : B, (x*) C Fp, then %H HZf:O 9(yi)

LD
. = o(k+1)

21/26 Primal-dual methods for solving infinite-dimensional games W\ Zﬁ .?d_l

vvvvvvv



Main result

Denote

g1 = k+1zuu Vg1 = Jlrlz

1

k
/UH
=0
k
L T
Lh4+1 = k—l—lz iv Ukl = k+1ZyZ

(u;, v, x;, y;) saddle-point defining 1 (A;, 14; ), where the sequence (\;, 1;) is
generated by the described method.

LD
A A . 2 " < — . 0

NB: §(u, ) > d(u*, z*, v*, ") > n(v,y).

LD, /o, LD, /o)
B/\ _ A < . C/\ _ A < —.
Hl’o+ Uk+1 ilfk+1” =+ 1), H?Jo-l- Vk+1 yk+1” =Tk + 1)
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Numerical example

We have two objects with motion given by equations

(11w (1) e ra e

tel0,1], n=m=2,P=Q=[-1,1].

o) = [ (M55 =) et Sl - w0l - y(r) - ol
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Controls
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Error in funcional value

Error in equality consraints

4 In (empirical error)

In (theoretical error)

In{k+1)

[F 1 2 3 4 5

VI ST

[ I ¥ S R R ¥

- # In(Cv-y empirical error)
F Y
A A In(Bu-x empirical error)
'y
LYY A In(theoretical error)

MR SN In{k+1)
T ME ¥ P 1
1 2 Ny 3 4 5 6
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Conclusion

= We consider convex-concave and strongly convex-concave saddle-point optimal
control problems (differential games).

= For each case, we propose an algorithm for approximating a saddle-point.
= We estimate the convergence rate of the proposed algorithms.

= Numerical experiments show that the practical performance is in consistency
with the theoretical convergence rate estimates.

Thank you for your attention!
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